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ABSTRACT
Analyzing cryptographic constructions in the computational
model, or simply verifying the correctness of security proofs,
are complex and error-prone tasks. Although computer tools
have significant potential to increase confidence in security
proofs and to reduce the time for building these proofs, ex-
isting tools are either limited in scope, or can only be used
by formal methods experts, and have a significant overhead.
In effect, it has remained a challenge to design usable and in-
tuitive tools for building and verifying cryptographic proofs,
especially for more advanced fields such as pairing-based or
lattice-based cryptography.

This paper introduces a formal logic which captures some
key reasoning principles in provable security, and more im-
portantly, operates at a level of abstraction that closely
matches cryptographic practice. Automatization of the logic
is supported by an effective proof search procedure, which
in turn embeds (extended and customized) techniques from
automated reasoning, symbolic cryptography and program
verification. Although the logic is general, some of the tech-
niques for automating proofs are specific to fixed algebraic
settings. Therefore, in order to illustrate the strengths of our
logic, we implement a new tool, called AutoG&P, which sup-
ports extremely compact, and often fully automated, proofs
of cryptographic constructions based on (bilinear or multi-
linear) Diffie-Hellman assumptions. For instance, we pro-
vide a 100-line proof of Waters’ Dual System Encryption
(CRYPTO’09), and fully automatic proofs of Boneh-Boyen
Identity-Based Encryption (CRYPTO’04). Finally, we pro-
vide an automated tool that generates independently verifi-
able EasyCrypt proofs from AutoG&P proofs.

Categories and Subject Descriptors
F.3 [Reasoning about Programs]: Logics of programs
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1. INTRODUCTION
Formal verification tools have the ability to deliver high-

integrity artefacts; they can also increase productivity of
artefact designers, provided they can achieve reasonable trade-
offs between benefits and costs of formal verification. Al-
though there is a lack of data and metrics to measure gains
in productivity, general-purpose software is one area where
appropriate trade-offs have been identified and where formal
verification has achieved significant benefits. In contrast, it
has proved more challenging to leverage the potential bene-
fits of formal verification in security-related areas, partly be-
cause formalizing properties of interest and adequate mod-
els to reason about them is hard. One notable exception
where formal verification has been used very successfully is
the security of cryptographic protocols in the Dolev-Yao or
symbolic model, for which numerous automated tools have
been developed [12, 21, 35]. However, proofs in the symbolic
model are restricted to cryptographic protocols (rather than
primitives) and deliver weaker guarantees than proofs in the
computational model. The question then arises whether one
can design verification tools for analyzing the security of
cryptographic protocols and primitives in the computational
model. Significant progress has been made over the last ten
years, and tools like CertiCrypt [9], CryptoVerif [13], Easy-
Crypt [8], and more recently FCF [34], have been used to
verify emblematic case studies. However, automated proofs
of cryptographic primitives remain out of scope, and it is
also a challenge to support proofs which follow the same
structure and level of abstraction as pen-and-paper proofs
from the literature. As a consequence, the scopus of for-
mally verified proofs (almost) completely elides some of the
most important developments in the field, such as pairing-
based or lattice-based cryptography (the only exception is a
formal proof of chosen-plaintext security of Boneh-Franklin
Identity Based Encryption in the random oracle model [10])
and adoption of formal proofs by the cryptographic commu-
nity has been limited.

Contributions. The main contribution of this paper is a
formal logic to reason about the concrete security of crypto-
graphic constructions directly in the computational model.
The distinguishing characteristics of our logic is its ability
to adhere to a level of abstraction that is close to the one
used in pen-and-paper proofs from the cryptography liter-
ature and to deliver compact and intuitive formal proofs,
using a core set of rules for bridging steps, failure events, re-
ductions, or hybrid arguments. The logic is similar in spirit
to CIL [6], but is instantiated to a functional programming



Type types of expressions

t ::= B boolean value
| BSl bitstring of length l ∈ Len
| Gi cyclic group with i ∈ GName
| Fq prime field of order q
| t× . . .× t tuple

Figure 1: Grammar for types.

language. Moreover, the logic is supported by an effective
proof search procedure which applies high-level rules built
on top of the core rules and exploits (often extended and
customized) techniques from automated reasoning (e.g. al-
gorithms for equational reasoning), symbolic cryptography
(e.g. algorithms for deducibility), and program verification
(e.g. strongest post-condition calculus) for automatically
discharging proof obligations. The proof search procedure
is proof-producing, in the sense that the proofs it constructs
are elaborated into elementary proofs in which all inferences
are performed using the core rules of the logic. Such ele-
mentary proofs are then translated into EasyCrypt, to obtain
foundational proofs in which all inference steps are explained
in terms of relational program logics.

Although the logic is general, some of the techniques used
for automating proofs, in particular those related to equa-
tional reasoning, are specific to an algebraic setting. Be-
cause of its importance in modern cryptography, we focus
on pairing-based cryptography, and implement a new tool,
called AutoG&P, able to analyze the security of pairing-
based constructions. Using AutoG&P, we provide the first
formal proofs of pairing-based constructions in the standard
model, including a fully automated proof of Boneh-Boyen
Identity Based Encryption [14] and a short (<100 lines)
proof of Waters’ Dual System Encryption [36]. Our proofs
show the feasibility of formal proofs for pairing-based cryp-
tography. Moreover, and quite interestingly, our proofs also
suggest that AutoG&P provides an adequate level of abstrac-
tion for transforming automatically proofs of security from
Type I to Type III settings, as investigated in [4, 3], as the
same high-level proof can be used to prove the security of
the Boneh-Boyen IBE scheme in the two settings.

2. NOTATION
In this paper, we consider expressions, programs, and se-

curity experiments as terms and make use of the following
operations on terms. We use t|p to refer to the subterm
of the term t at position p and t{t′}p to refer to the result
of replacing the term at position p with t′. If p is a po-
sition in a sequence, we abuse notation and write t{}p to
remove the element in the sequence at position p. We write
t{x1 7→ t1, . . . , xk 7→ tk} to denote the result of substituting
xi by ti in t. A context C is a term with a distinguished
variable 2 which denotes a hole that can be filled in by an
arbitrary term. We use C{t} to denote the term obtained
by plugging t into C′s hole.

3. LANGUAGE
In this section, we define the syntax and semantics of ex-

pressions, games, security experiments, and judgments.

3.1 Types and expressions
The set Type of types is defined by the grammar given

in Figure 1 where Len denotes a finite set of length vari-
ables and GName denotes a finite set of group names. We
assume given disjoint infinite sets Vart of typed variables
and define Var as the union of these sets. We also assume
given sets Fsym of function symbols and Emap ⊆ GName ×
GName× GName and Isom ⊆ GName× GName defining the
types of modeled bilinear maps and isomorphisms between
the groups. Given these sets, we define the corresponding
signature Sig in Figure 2. The set Expr of expressions con-
sists of all terms built over Sig. We say an expression is
efficient if it does not contain log.

A group setting G = (q, {Gi}i∈GName, {êj}j∈Emap, {φj}j∈Isom)
consists of a prime q, an indexed set of cyclic groups Gi of or-
der q, an indexed set of bilinear maps êr,s,t : Gr×Gs → Gt,
and an indexed set of isomorphisms φr,s : Gr → Gs. We as-
sume that the structure defined by Emap and Isom does not
contain cycles that would allow for an unbounded number
of multiplications in the exponent. Our formalism can be
used to model bilinear groups of Type I, Type II, Type III,
and (leveled) k-linear groups [15, 17, 28]. An interpreta-
tion I consists of a group setting G, a mapping from length
variables to natural numbers, and a mapping from function
symbols to functions. We write I(l) to denote the length
assigned to l and I(h) to denote the function assigned to h.

3.2 Equivalence of expressions
We define an equivalence relation on expressions based on

satisfaction in first-order logic. The expressions e and e′

are equivalent modulo E , written e =E e
′, if E |= e = e′.

Here, E denotes the axioms for our signature consisting of
the field axioms for Fq, the (bilinear) group axioms for Gi,
and the usual axioms for congruence, the logical operators
and the bitstring operators. We consider inversion in Fq as
underspecified, i.e., 0−1 is some arbitrary fixed value in Fq
and we can only simplify x∗x−1 to 1 if x 6= 0 holds. We use
Γ |= e =E e

′ to denote (Γ, E) |= e = e′, i.e., E is extended
with additional axioms Γ. We assume the set of axioms Γ
consists of (in)equalities on expressions.

We use contexts to express algorithms that can be defined
using the signature Sig. We say a context C is ground if C
does not contain any variables except 2. We write e `CE e′
if C{e} =E e

′ for a ground context C. We write e `E e′ if
there exists a context C such that e `CE e′. Similarly, we
write Γ |= e `CE e′ if Γ |= C{e} =E e

′ and Γ |= e `E e′ if
there exists such a context C. For example, it does not hold
that a ∗ b `E b, but a 6= 0 |= a ∗ b `E b holds as witnessed by
the context C = 2/a.

3.3 Games
A game is a sequence of game commands. A game com-

mand is a let binding, a random sampling, an assertion, or
an adversary call. For each adversary call, the provided ora-
cles are defined inline. An oracle definition consists of the or-
acle symbol, the parameters, a sequence of oracle commands,
and the return value. An oracle command is a let binding, a
random sampling, or a guard that ensures that ⊥ is returned
unless the given test succeeds. The grammars O for oracle
definitions and gc for game commands are given in Figure 3.
In the grammars, we use typed oracle symbols o ∈ Osym
and typed adversary symbols A ∈ Asym. The scope of vari-
ables bound in the body of games extends to succeeding or-



Sig Signature for expressions

x : t variables for x ∈ Vart

h( ) : t1 → t2 function symbols h ∈ Fsym

( , . . . , ) : t1 × . . .× tk → (t1 × . . .× tk), πi : t1 × . . .× tk → ti tuple construction and projection

gi : Gi generator of Gi
∗ : Gi ×Gi → Gi, / : Gi ×Gi → Gi multiplication and division in Gi

( )( ) : Gi × Fq → Gi, log : Gi → Fq exponentiation and discrete log in Gi
êi : Gi1 ×Gi2 → Gi3 , φj : Gj1 → Gj2 bilinear map (i ∈ Emap), isomorphism (j ∈ Isom)

0 : Fq, + : Fq × Fq → Fq, −( ) : Fq → Fq additive group operations for Fq
1 : Fq, ∗ : Fq × Fq → Fq, ( )−1 : Fq → Fq multiplicative group operations for Fq
0l : BSl, ⊕ : BSl × BSl → BSl operations on bitstrings BSl

= : t× t→ B, ( ? : ) : B× t× t→ t equality and if-then-else

¬ : B→ B, ∧ : B× B→ B negation and conjunction

Figure 2: Signature for expressions.

acle definitions. In assertions, we support event expressions
ev ∈ Exprev, which are also defined in Figure 3. The quantifi-
cations range over the parameters used in adversary queries.
For example, the assertion assert(∀c ∈ QDec1 . c 6= c∗) ex-
presses that c∗ is a ciphertext that has not been queried to
the decryption oracle Dec1. We use osym(G) to denote all
oracle symbols occuring in a game G and asym(G) to de-
note all adversary symbols occuring in a game G. We say a
game G is well-formed if it is well-typed, does not contain
free variable occurences, all oracle and adversary symbols
are distinct, and all binders bind distinct variables. To sim-
plify the presentation, we allow for at most one exceptional
value in random samplings. This restriction can be lifted,
but care must be taken to ensure that the types are large
enough such that the support of the resulting distribution is
not empty.

We say a tuple S = (I, {δo}o∈osym(G), {AA}A∈asym(G)) is
a G-setting if I is an interpretation, δ is an indexed set of
query bounds for oracle symbols occuring in G, and A is an
indexed set of adversaries for adversary symbols occuring
in G. Given such a setting, we can execute G as follows:

1. Compute generators of the groups Gi by random sam-
pling or by applying the bilinear maps and isomor-
phisms to generators that have already been computed.

2. For each oracle o occuring in G, we initialize a counter
variable co with zero and a query set variable Qo with
the empty set.

3. For a let binding let x= e, we evaluate the expression e
using the operations defined by I and store the result
in the variable x.

4. For a random sampling x←$ t\a, we evaluate a denot-
ing the result with b, uniformly sample from the set
I(t) \ {b} (where I(t) is set of values of type t), and
store the result in the variable x.

5. For an assertion assert(ev), we evaluate ev and abort
if the result is false.

6. For an adversary call y ← A(e) with ~O, we evaluate e
and call the adversary AA with the result as input.
The adversary is provided with access to the imple-
mentations of the oracles ~O. We allow the adversary
procedures AA to share state.

The oracles are implemented as follows:

1. If co ≥ δo, then ⊥ is returned. Otherwise, the counter
co is increased, the query parameters are stored in Qo,
and the oracle body is executed.

2. Guards are treated similar to assertions, but instead
of aborting, the value ⊥ is returned to the adversary
and execution continues normally.

To perform reductions, we want to be able to state that a
game G(B) is equivalent to a game G′(A), capturing a cryp-
tographic assumption, when the adversary A is instantiated
in a certain way. Usually, A is instantiated with a simula-
tor that simulates G to the original adversary B and uses
B’s output to break the assumption. Additionally, we might
want to express the oracle bounds for A in G′ in terms of
oracle bounds for B in G.

To achieve this, we extend our syntax and semantics to
support the instantiation of adversaries and oracle bounds.
We extend the syntax of games as follows. A game G is
either an uninstantiated game G as defined before, a game
G[no := f ] where the bound for calls to o is instantiated
by the polynomial f over oracle bounds, a game G[A := A]
where the adversary symbol A is instantiated with the adver-
sary definition A. Here, A is defined in some language that
extends our language of games, e.g., the probabilistic pro-
gramming language PWhile [8] used in EasyCrypt. We allow
such adversary definitions A to include calls to unspecified
adversary procedures identified by adversary symbols B. To
prevent cyclic definitions, we assume that o /∈ osym(f) and
A /∈ asym(A). We extend asym to return only uninstanti-
ated adversary symbols:

asym(G) =

{
asym(G) if G = G[no := f ]
asym(G,A) \ {A} if G = G[A := A]



O ::= o(x) = {~oc; return e} oracle definition

oc ::= c ordinary command
| guard(b) guard for b ∈ ExprB

gc ::= c ordinary command
| assert(ev) assertion for ev ∈ Exprev

| y ← A(x) with ~O adversary call with oracles

c ::= let x= e let binding

| x←$ t \ a sample unif. from t \ {a}

ev ::= e expression
| ∃ b1, . . . , bk. e there exist queries
| ∀ b1, . . . , bk. e for all queries

b ::= x ∈ Qo x ranges over queries

Figure 3: Grammars for oracle definitions and
games.

Similarly, we extend osym to return only uninstantiated or-
acle symbols:

osym(G) =

{
osym(G, f) \ {o} if G = G[no := f ]
osym(G) if G = G[A := A]

The definition of G-setting remains unchanged, but uses the
extended versions of asym and osym. The instantiated or-
acle bounds and the instantiated adversaries are then com-
puted from the bound polynomials and adversary definitions
by using δ and A for the occuring oracle and adversary sym-
bols.

3.4 Security experiments and judgments
A security experiment SE is a pair [ G : ev ] of a game

G and an event expression ev. We say a security experi-
ment is well-formed if G; assert(ev) is well-formed. We use
PrS [ G : ev ] to denote the probability that the execution
of G in the setting S terminates without aborting and ev
evaluates to true in the final memory.

We use the following grammar to define the set PExpr of
probability expressions:

P, P ′ ::= 0 zero

| P + P ′ addition

| no × P security loss

| 1/|t| collision bound

| [ G : ev ]succ success prob.

| [ G : ev ]adv advantage prob.

| [ G : ev ][ G′ : ev′ ] distinguishing prob.

We call the subscripts succ, adv, and [ G′ : c′ ] probabil-
ity tags. We say S = (I, δ,A) is a P -setting if dom(δ) =
osym(P ) and dom(A) = asym(P ). Given such a P -setting S,
we define the probability function probS(P ) that assigns

GBB =

1 : c, d, h←$ Fq; let P =(gc, gd, gh);

2 : i∗ ← A1();

3 : b←$ B; e←$ Fq; let C =(ge, (P i
∗

2 ∗ P3)e);

4 : let K0 = ê(P1, P2)e; K1 ←$ Gt;
5 : b′ ← A2(P,C, (b?K0 : K1)) with

PrivKey(i) = {
5.1 : guard(i 6= i∗);

5.2 : r ←$ Fq;
5.3 : return (g(c∗d+r∗(d∗i+h)), gr)

};

GDBDH
β =

a, b, c←$ Fq; t←$ Fq
[β=1]

b← B(ga, gb, gc, ê(g, g)a b c
[β=0]

ê(g, g)t
[β=1]

)

Figure 4: Game for IND-sID-CPA security of the
Boneh-Boyen-IBKEM and game for DBDH assump-
tion. The overlined expressions only occur for β = 0
(resp. β = 1).

probabilities to probability expressions as follows:

probS(P ) =

0 if P = 0
probS(P1) + probS(P2) if P = P1 + P2

δo probS(P1) if P = no × P1

1/|I(t)| if P = 1/|t|
PrS [ SE ] if P = [ SE ]succ
PrS [ SE ]− 1

2
if P = [ SE ]adv

|PrS [ SE ]− PrS [ SE′ ]| if P = [ SE ]SE′

A probability judgment J is a pair P � P ′ of probability
expressions. A judgment P � P ′ is valid if

1. asym(P ′) ⊆ asym(P ),

2. osym(P ′) ⊆ osym(P ), and

3. for all P -settings S, it holds that probS(P ) ≤ probS(P ′).

Conditions (1) and (2) ensure that all adversary and oracle
symbols that occur only in P ′ must be instantiated.

Example 1. For the games given in Figure 4, we can ex-
press the probability associated to the IND-sID-CPA secu-
rity of the Boneh-Boyen-IBKEM as [ GBB : b = b′ ]adv and we
can express the DBDH assumption as

[ GDBDH
0 : b ][ GDBDH

1 : b ] .

We consider the key encapsulation mechanism (KEM) vari-
ant of the Boneh-Boyen identity-based encryption scheme [14]
to simplify the presentation of our example. The game GBB

proceeds as follows. In line 1, the master secret key and
the public parameters are computed. In line 2, the adver-
sary must choose the challenge identity. In lines 3 and 4
the challenge encapsulation C, the corresponding session
key K0, and a random session key K1 are computed. In
line 5 the adversary is called and must guess if he received
the real or a random session key. He is provided with access
to the PrivKey-oracle that returns the private key for the



given identity, which is computed in lines 5.2 and 5.3. The
guard in line 5.1 denies queries for the challenge identity.

We would like to prove the probability judgment

[ GBB : b = b′ ]adv � [ GDBDH
0 [B := B] : b ][ GDBDH

1 [B:=B] : b ]

for some adversary definition B that can use A1 and A2.
The judgment formalizes that the IND-sID-CPA advantage
for all adversaries A1 and A2 instantiating A1 and A2 can
be upper-bounded by the DBDH distinguishing probability
for B (using A1 and A2).

In the next section, we will present a logic that allows us
to prove the validity of such judgments P � P ′. The logic
takes a probability expression P and during proof construc-
tion, the bound P ′ and the oracle polynomials and adversary
definitions for reductions are synthesized. Our logic captures
concrete security [11] since we explicitly relate adversaries
and bounds in P and P ′.

4. CORE LOGIC
In this section, we present our core logic. We focus on

a subset of rules that is sufficient for proofs that do not
require advanced techniques such as hybrid arguments or
equivalence up to failure. We first present these core rules.
Then, we formalize and prove soundness of the logic. Finally,
we present algorithms for checking contextual equivalence of
expressions. We will present high-level rules derived from
the core rules in Section 5 and the remaining core rules in
Section 6.

4.1 Core rules
Our logic relates probability judgments and consist of

rules of the form

P1 � ε1 . . . Pk � εk
P � ε

where the Pi and P are probability expressions, the εi are
metavariables, and ε is a probability expression built over
the εi. The logic can be used to prove the validity of judg-
ments of the form [ G : ev ]t � ε for a fixed ε or to synthe-
size ε while performing the proof. Our logic defines a small
set of core rules which we then use to construct high-level
rules that can be elaborated into core logic derivations.

For rules that perform contextual reasoning, we make use
of the function spp([ G : ev ]) that computes the strongest
postcondition at position p by collecting all (in)equalities in
lets, random samplings, asserts, and guards on the path to p.
The formal definition of sp can be found in Section 4.3. We
now discuss the core rules given in Figure 5. The figure con-
tains rules for dealing with probability judgments, bridging
rules formalizing program transformations and equivalence
of distributions, and rules for case distinctions and reduc-
tions.

Probability judgment rules
The Sym rule swaps the two security experiments in a dis-
tinguishing probability. This rule is required since all other
rules only act on the first security experiment. The Deq
rule formalizes that two identical games cannot be distin-
guished. The FalseEv rule formalizes that the probability
of the event false is 0 in all games G. The Refl rule formal-
izes reflexivity. It is usually used if the premise is a hardness

assumption that appears on the right-hand-side of the prob-
ability judgment to be proved. The Trans(SE′) rule for-
malizes transitivity and is usually used in combination with
other rules to derive new rules. For example, it is possible
to derive inverses for all program transformation rules using
Trans. The side condition enforces that no uninstantiated
oracle or adversary symbols are introduced.

Program transformation rules
The Swap(p) rule swaps the command at positions p with
the following command. Note that we require premise and
conclusion to be well-formed, e.g., all variable occurences
must be bound and bound variables must be distinct. This
prevents Swap applications that lead to undefined variable
occurences or change the semantics. The Add(p, c) rule
inserts the command c at position p. As for Swap, the
well-formenedness requirement is important since it prevents
overshadowing of existing definitions. Add can be used to-
gether with Trans and Sym to remove commands. The
Subst(p, e) rule performs contextual rewriting and replaces
e′ at position p by e if spp(SE) |= e =E e

′ holds. The Subst
rule is used for many different purposes in proofs. For exam-
ple, it is often required to rewrite expressions before applying
a cryptographic assumption, e.g., rewrite ga∗b∗x to (ga∗b)x.

Random sampling and branching rules
The Rnd(p, t′, C, C′) rule formalizes optimistic sampling and
replaces a uniform sampling from t by a uniform sampling
from the distribution defined by s ←$ t′; return C{s}. To
ensure that these distributions are equal, the rule checks
that C is bijective in the given context using the provided
inverse C′. The Except(p, b) rule adds the new excepted
value b to the random sampling at position p. The bound is
scaled by no if p is inside an oracle o. The CaseEv(c) rule
performs a case distinction on the condition c in the event
to bound both cases separately.

Reduction rules
The Abstract(G′,B, B) rule moves some parts of the orig-
inal game into a simulator B. In the arguments, G′ is a
game, B is an adversary symbol occuring exactly once in G′,
and the simulator B = (Bcs, Bret) is a tuple of a sequence
of commands and a return-expression. The simulator B can
contain a hole to represent an input and oracle calls y ← o(e)
to oracles provided to B in G′. To apply the rule, the result
of instantiating B with B in G′ must be equal to G.

More formally, we define the (partial) function for adver-
sary instantiation as follows. If B is not efficient or if any of
the following steps fail, then inst(G′,B, B) = ⊥. Otherwise,
let y, e,~o, ~x,~c, ~r such that

y ← B(e) with {oi(xi) = {ci; return ri}}ki=1.

is the only call to B in G′. We denote the position of this
call with p. Then inst(G′,B, B) = G′{B′; let y=Bret{e}}p
where B′ is obtained from Bcs by plugging e into the hole
and inlining all oracle calls.

Since rules should only introduce instantiated oracle and
adversary symbols, the Abstract rule instantiates B with
B and the new oracle symbols in G′ with the polynomial
bounds fi. The bounds fi are computed by inspecting B,
e.g., if o1 is called twice in the main body and once in an
unbounded oracle o′, then f1 = 2 + no′ .



Probability judgment:

Sym
[ SE′ ][SE] � ε
[ SE ][SE′] � ε

Deq
[ SE ][SE] � 0

FalseEv
[ G : false ]t � 0

t ∈ {succ, adv}

Refl
[ SE ]t � [ SE ]t

Trans(SE′)
[ SE′ ]t � ε1 [ SE ][SE′] � ε2

[ SE ]t � ε1 + ε2

asym(SE) = asym(SE′) and
osym(SE) = osym(SE′)

Program transformation:

Swap(p)
[ SE{c′; c}p ]t � ε
[ SE{c; c′}p ]t � ε

Add(p, c)
[ SE{c; c′}p ]t � ε
[ SE{c′}p ]t � ε

c sampling, let,
or guard(true) Subst(p, e)

[ SE{e}p ]t � ε
[ SE{e′}p ]t � ε

spp(SE) |= e =E e′

Random sampling:

Rnd(p, t′, C, C′)
[ SE{s←$ t′; let r=C{s}}p ]t � ε
[ SE{r ←$ t}p ]t � ε

spp(SE) |= C′{C} =E 2

Except(p, b)
[ SE{r ←$ t \ b}p ]t � ε
[ SE{r ←$ t}p ]t � ε+ s× 1/|t|

s =

{
no if p in o
1 otherwise

Branching:

CaseEv(c)
[ G : ev ∧ c ]t � ε1 [ G : ev ∧ ¬c ]t � ε2

[ G : ev ]t � ε1 + ε2
t ∈ {succ, adv}

Reduction:

Abstract(G′,B, B)
[ G′[B := B, no1 := f1, . . . , nok := fk] : ev ]t � ε

[ G : ev ]t � ε

G = inst(G′,B, B), asym(G′) ⊆ asym(G) ] {B},
o1, . . . , ok oracles provided to B,
{o1, . . . , ok} ∩ osym(G) = ∅, and
fi bounds for oracle queries to oi in B

Figure 5: Core Rules. We require all security experiments in premises and conclusions to be well-formed.

4.2 Soundness of the core logic
In this section, we state and prove a soundness theorem

for the core logic. For the proof, remember that our side-
condition on rules ensures that all security experiments oc-
curing in a derivation are well-formed.

Theorem 1. Let ∆ denote a derivation of

P � P ′

in the core logic, then P � P ′ is valid.

Proof Sketch. We perform a proof by induction over
derivations. Let S denote an arbitrary P -setting. Let ∆i

denote derivations of Pi � P ′i for i ∈ {1, . . . , k} and as-
sume ∆ is the result of applying one of the core rules to the
premises ∆i. We then know that the premises Pi � P ′i are
valid. For all rules except Trans and Abstract this im-
plies that conditions (1) and (2) also hold for P � P ′. We
proceed by performing a case distinction on the applied core
rule:
Sym, Deq, FalseEv, Refl: Immediately follows from the

definition of validity and probS .
Trans(SE′): Conditions (1) and (2) for [SE]t � ε1+ε2 are

implied by the side-condition of the rule. To see that
condition (3) holds, observe that the second premise
yields |PrS [ SE ]− PrS [ SE′ ]| ≤ ε2.

Swap, Add: Well-formedness of the premise implies that
the distribution of the final memory (except for unused
variables) coincides in both security experiments.

Subst: In the given context, evaluating e and e′ yields the
same result.

Rnd: The distribution of the final memory is the same.
Note that the variable smust be fresh since the premise
is well-formed.

Except(p, b): The games differ only if the value b is sam-
pled. The probability of sampling b is reflected in the
term 1/|t| × s.

CaseEv: Follows from the fact that PrS [ G : ev ] =
PrS [ G : ev ∧ c ] + PrS [ G : ev ∧ ¬c ].

Abstract(G′,B, B): The game G where B is inlined and
the game G′ where B is an instantiation argument are
equivalent.

4.3 Checking contextual equivalence
For most of the rules presented so far, it is obvious how to

implement proof checking if all rule arguments are explicitly
given. The only exceptions are the rules Subst and Rnd
that both require a precise definition of spp(SE) and algo-

rithms for checking the conditional equivalence Γ |= e =E e
′.

To define sp, we use the function conseq that takes a com-
mand c and returns a formula that characterizes its effect



on the state:

conseq(c) =


x 6= a if c = x←$ t \ a
x = e if c = let x= e
b if c = guard(b)
nquant(ev) if c = assert(ev)

Here, nquant(ev) denotes the (in)equalities in ev that are not
below a quantifier. To compute spp(G), we start with true
and for each command c on the path to p, we add the con-
junct conseq(c) to the current post-condition. We ignore all
oracle bodies unless p points into an oracle. If p points into
an oracle, the commands in the oracle body preceding p are
taken into account and all other oracle bodies are ignored.
Since we can always rewrite the strongest post-condition into
disjunctive normal form and check Γ |= e =E e

′ for each dis-
junct separately, we assume w.l.o.g. that Γ is a conjunction
of equalities and inequalities.

We use the following algorithm to rewrite e and e′ into
a normal-form and then check for syntactic equality. The
algorithm combines separate algorithms for bitstrings, field
expressions, and booleans that are applied bottom-up to val-
ues of the given types. In a first step, we simplify and orient
the equalities in Γ and apply the resulting replacements to
e and e′. Afterwards, values of type Gi are rewritten as gfi
by using the log function and translating multiplication, di-
vision, and pairing to the corresponding operations on the
exponents. Then we perform normalization bottom-up us-
ing the following approach:
• For bitstrings, we deal with ⊕ and 0 using the standard

approach of flattening, sorting, filtering out 0, and counting
occurences of expressions modulo 2.
• For values of type Fq, our algorithm computes a normal-

form of rational functions as used in computer algebra sys-
tems [29]. The algorithm represents ring expressions as poly-
nomials over expressions e with non-field root symbols. It
represents field expressions using a numerator polynomial f
and a denominator polynomial h such that gcd(f, h) = 1.
Since the algorithm is only valid for well-defined expressions,
we use a subroutine to prove

∧n
i=1 fi 6= 0 =⇒ h 6= 0 for all di-

visions by expressions h in e and e′. The subroutine uses gcd
to find divisors hj of the fi such that h = c ∗

∏
j hj for some

c ∈ Q. Since we know hj 6= 0, this implies h 6= 0. Concretely,
the subroutine searches for i such that hj = gcd(h, fi) non-
trivial. If no such i exists, it fails. Otherwise it continues
with h := h/hj until eventually, h ∈ Q.
• For boolean values, we simplify equations by splitting

equalities on product types, applying log to transform equal-
ities on Gi into equalities on Fq, and exploit the group struc-
ture for both bitstrings and field elements to obtain equa-
tions of the form e = 0. For field elements, e must be equal
to f ∗ h−1 for normal-form ring expressions f and h. If e is
well-defined, we further simplify f ∗ h−1 = 0 to f = 0 and
obtain a disjunction of inequalities fi = 0 after factoring
f into

∏
i fi. For the logical operators, we apply the usual

simplification rules such as e ∧ e = e and e ∨ true = true.
• For if-then-else, we detect common contexts C in both

branches and simplify b?C{e} : C{e′} to C{b?e : e′}.
Our implementation uses the Factory library packaged

with the computer algebra system Singular [22] to perform
the required computations on multivariate polynomials such
as gcd or factoring. In the future, we might investigate the
use of Groebner bases to check the satisfiability of sets of

(in)equalities. But so far, we did not have problems with
completeness using our approach.

5. HIGH LEVEL LOGIC
In theory, the core rules presented so far are sufficient

to perform proofs that do not require hybrid arguments or
equivalence up to failure. In practice, the level of abstraction
is too low to perform non-trivial proofs.

In this section, we therefore derive high-level rules that
capture standard arguments in cryptographic proofs. The
high-level rules critically rely on algorithms that automati-
cally infer arguments required for the elaboration into core
rules. To perform fully automated proofs and to automati-
cally discharge individual proof obligations, we then present
a proof search procedure that finds derivations using our
high-level rules.

5.1 Derived rules
The Simp rule unfolds all let-bindings and rewrites all ex-

pressions to their normal form. Simp is elaborated to appli-
cations of Subst that replace expressions by their normal
form and applications of Trans and Add to remove (un-
used) let-bindings. The rule exploits that the normal form
replaces all occurences of let-defined variables with their def-
initions. Optionally, the Simp rule can also use Swap to
reorder commands in a unique, dependency-preserving way,
remove exceptional values from samplings, and replace sam-
plings of group elements by samplings of exponents.

The high-level Rnd? rule accepts a placeholder for one of
C or C′. For example, given C and in a context where Γ
holds, Rnd? uses a specialized algorithm for deducibility to

find C′ such that Γ |= C, ~x `C
′
E 2 where ~x denotes all vari-

ables in G that are defined before the considered random
sampling. Rnd? then uses the Simp rule to unfold the in-
troduced let-binding. We will describe the algorithm for
conditional deducibility in Section 5.3.

The Indep rule can be used to bound the probability of
an event ev in G with 1/|t| if the event implies that G
“guesses” the value of an unused randomly sampled vari-
able. For all random variables r that are not used in the
game, Indep tries to find an expression e not containing r
such that r = e is implied by ev. After adding such an
equality to the event, Except can be used to sample r
from t \ e. The event can then be simplified to false and
we can conclude by applying FalseEv. To find such an e,
Indep first combines all equalities in the event to obtain
an equality of the form (e1, . . . , ek) = (0, . . . , 0). Then,
it uses a specialized algorithm for deducibility to find a
C such that Γ |= (e1, . . . , ek), ~x `CE r where ~x contains
all variables that are defined before r is sampled. Since
C{(e1, . . . , ek)} = C{(0, . . . , 0)} is implied by the event and
C{(0, . . . , 0)} does not contain r, it now suffices to exploit
Γ |= C{(e1, . . . , ek)} =E r to get the desired equality of the
form r = e.

The high-level rule IfEq replaces all occurences of b?r1 : r2
in a security experiment SE by r1 if r1 and r2 are randomly
sampled variables of type Fq that only occur in this context.
The IfEq rule first applies Rnd? to replace r2 by r1 + r2.
This yields r1 + (b?0 : r2) after simplification. Then, Rnd?

is applied to the sampling of r1 and replaces r1 + (b?0 : r2)
with r1. This often makes the adversary’s view independent
of b and enables applications of Indep.



5.2 Automated application of assumptions
To apply a computational assumption such as [ G′ : ev′ ]succ

to a judgment [ G : ev ]succ, the Abstract rule must be used
followed by the Refl rule. To apply Abstract, the simu-
lator argument B has to be given explicitly and the instan-
tiation of B in G′ : ev′ with B has to be syntactically equal
to G : ev. To apply an assumption, it is therefore necessary
to perform the following steps:

1. Rewrite G and G′ into a normal form, e.g., instead of
sampling X ∈ Gi, sample x ∈ Fq and compute gxi .

2. Swap and rename random samplings in G to match up
with G′. The remainder of G will correspond to the
simulator B.

3. Rewrite the part of G corresponding to B such that it
does not use log or the random variables sampled by
the challenger. To achieve this, the argument a used in
the call B(a) in G′ can be used instead. It might also
be required to replace samplings of group elements in
B by samplings of exponents.

We use the correct variant of Simp to perform the first
step unfolding all let-bindings in both games. If required
to match up the samplings in both games, we also remove
exceptions from samplings. Then, for all injections ρ from
samplings in G′ to samplings in G, we try the following.
We match up the samplings according to ρ and match up
adversary calls in G′ with commands in G. To find the cor-
rect return value for the adversary call, we match up the
two events ev and ev′. We now know the commands B′cs
and the return expression B′ret that make G′ equivalent to
G. We still must rewrite these to (Bcs, Bret) to satisfy the
restrictions described in the third step. To achieve this, we
use conditional deducibility and for each expression e in B′

we try to find a C such that Γ |= C{a, ~x} =E e where a
is the adversay input and ~x are the variables defined in B′

before e is used.
The approach for applying a decisional assumption of the

form [ G0 : ev0 ][ G1 : ev1 ] is similar. Instead of discharging

a judgment [ SE ]t, it yields a new judgment [ SE′ ]t where
the difference between SE and SE′ reflects the difference
between [ G0 : ev0 ] and [ G1 : ev1 ]. The high-level rule for
decisional assumptions first rewrites SE such that it can be
expressed as inst(G0,B, B) for some B. Then it computes
SE′ = inst(G1,B, B) and applies Trans(SE′). The first
premise of Trans is [ SE′ ]t. The second premise is dis-
charged by applying Abstract (with the same B and B)
to both [SE] and [SE′] in the distinguishing probability fol-
lowed by Refl.

5.3 Algorithms for conditional deducibility
So far, we have encountered three different high-level rules

that require an algorithm to solve conditional deducibility
problems. The Rnd? rule must find the inverse C′ of a given
context C. The Indep rule must find a context C to extract
a random variable from an expression. The rules for the
automated application of assumptions must find (log-free)
contexts C to deduce expressions e from known variables ~x
and the adversary input a.

We have developed an algorithm following the approach
described in [18] to deal with the combination of theories
and to deal with Xor as a monoidal theory by solving equa-
tions over the associated semiring. For deducibility in groups
and Fq, we extended their approach to deal with the condi-

tional axioms required to model inversion as a partial func-
tion. Our extension consists of two separate algorithms.

The first algorithm is used for Rnd? and Indep and uses
log to reduce deducibility in Gi to deducibility in Fq. In
both use-cases, the subroutine used for deducibility in Fq
must solve problems of the form Γ |= e, ~x `E y where ~x is a
vector of variables of type Fq, y is a variable of type Fq, and e
is a well-defined field-expression over the variables ~x and y.
We can therefore normalize e and obtain two polynomials f
and h such that e is equal to f∗h−1. If y occurs in both f and
h, we give up. Otherwise, let {f, h} = {ŵ, w} such that w
contains y and ŵ does not. We can then deduce ŵ and it
suffices to focus on deducing y from w. To achieve this, we
try to find w1, w2 such that w is equal to w1 ∗ y+w2 and wi
does not contain y and is hence deducible. If the degree of y
in w is different from 1, this will not be possible and we give
up. Otherwise, we can solve for y and since ŵ, w1, and w2

are deducible, we can deduce y from f ∗ h−1 which is either
equal to ŵ ∗ (w1 ∗ y + w2)−1 or to (w1 ∗ y + w2) ∗ ŵ−1.

The second algorithm is more complicated since the con-
text C cannot use log and we must distinguish between ex-
pressions in Fq that are known and expression that are only
known “in the exponent”. In the second case, we can only
perform a limited number of multiplications using pairings
and compute linear combinations using group multiplica-
tions. Our algorithm is tailored to problems of the form
Γ |= ~x, gf1i1 , . . . , g

fk
ik
`E ghj where ~x is a vector of variables

of type Fq and the fi and h are polynomials. To solve such
problems, we perform the following two steps keeping track
of the context associated to each step.

1. Compute all group elements in Gj that can be obtained
by applying pairings and isomorphisms to the given
group elements gfuiu . This results in the new problem

Γ |= ~x, gw1
j , . . . , g

wl
j `E g

h
j .

2. Search for polynomials ui over ~x such that

l∑
i=1

ui ∗ wi = h.

To find such polynomials, we roughly proceed as fol-
lows. Perform a division with remainder of h by wi to
obtain ui and b such that h = ui ∗ wi + b. Check that
ui is a polynomial over ~x and continue with h := b.
Since the division step might succeed with some wj ,
but we might get stuck later on since there is no so-
lution that uses wj , we perform backtracking on the
choice of divisors wj .

5.4 Proof search
Between each step, our proof search procedure applies the

simplification rule Simp. This is critical since most steps are
information-theoretical and exploit that group elements are

always of the form g
f/h
i for polynomials f and h. Next, we

try to apply FalseEv, Indep, or a computational assump-
tion that we want to use in the proof. Then, we try to make
the view of an adversary Ai independent of random vari-
ables by applying Rnd? to replace contexts C{r} occuring
in the game by r. If this succeeds, then the other random
variables occuring in C are not used in the given positions
anymore. This might enable new applications of Indep, e.g.,
if a variable r′ that previously occcured in C{r} in an adver-
sary argument only occurs in the event afterwards. Another
useful side-effect is that Rnd might remove products of vari-



GBB,1 =

1 : i∗ ← A1();

2 : c, d, h, e ←$ Fq; let P =(gc, gd, gh);

3 : b←$ B; let C =(ge, g(d∗i
∗+h)∗e );

4 : let K0 = ê(g, g)c∗d∗e ; K1 ←$ Gt;
5 : b′ ← A2(P,C, (b?K0 : K1)) with

PrivKey(i) = {
5.1 : guard(i 6= i∗);

5.2 : r ←$ Fq;
5.3 : return (g(c∗d+r∗(d∗i+h)), gr)

};

GBB,2 =

1 : i∗ ← A1();

2 : c, d, h, e←$ Fq; let P =(gc, gd, gh−d∗i
∗

);

3 : b←$ B; let C =(ge, gh∗e );

4 : let K0 = ê(g, g)c∗d∗e; K1 ←$ Gt;
5 : b′ ← A2(P,C, (b?K0 : K1)) with

PrivKey(i) = {
5.1 : guard(i 6= i∗);

5.2 : r ←$ Fq;

5.3 : return ( g(c∗d+r∗(d∗(i−i
∗)+h)) , gr)

};

GBB,4 =

1 : i∗ ← A1();

2 : c, d, h, e, t ←$ Fq; let P =(gc, gd, gh−d∗i
∗
);

3 : b←$ B; let C =(ge, gh∗e);

4 : let K0 = ê(g, g)t ; K1 ←$ Gt;
5 : b′ ← A2(P,C, (b?K0 : K1)) with

PrivKey(i) = {
5.1 : guard(i 6= i∗);

5.2 : r ←$ Fq;
5.3 : return (g(c∗d+r∗(d∗(i−i

∗)+h)), gr)

};

GBB,5 =

1 : i∗ ← A1();

2 : c, d, h, e, t←$ Fq; let P =(gc, gd, gh−d∗i
∗
);

3 : b←$ B; let C =(ge, gh∗e);

5 : b′ ← A2(P,C, ê(g, g)t )) with

PrivKey(i) = {
5.1 : guard(i 6= i∗);

5.2 : r ←$ Fq;
5.3 : return (g(c∗d+r∗(d∗(i−i

∗)+h)), gr)

};

Figure 6: Proof of the Boneh-Boyen IBKEM using our high-level rules.

ables that are not deducible from the values provided by the
challenger for an assumption. Finally, we try to to apply one
of the decisional assumptions specified in the given context.
To exclude useless applications of decisional assumptions,
we check that the adversary arguments that differ in G0 and
G1 are used. To prevent cycles, we also disallow applications
of assumptions that undo previous applications by applying
the assumption in the opposite direction. In general, non-
termination might still be possible and we therefore bound
the size of the explored proof trees.

Example 2. We now prove the judgment from Example 1
using the high-level rules. Our implementation of the proof
search automatically finds the following proof.

The proof search first applies Simp which yields the game
GBB,1 given in Figure 6. We keep the let-definitions in our
presentation to increase readability.

In the next step, the proof search applies the Rnd? rule
to the sampling of h. The proof search discovers that h is
used in the context h+d∗ i∗ in the exponent of C2 and that
replacing h+d∗i∗ by h removes all occurences of the product
d ∗ e from the game. The elaborated core rule application is

Rnd(ph,2− d ∗ i∗,2 + d ∗ i∗)

where ph is the position of the sampling of h. The rule
replaces h ←$ Fq by h′ ←$ Fq; let h=h′ − d ∗ i∗ and after
unfolding, the new exponent of C2 is (d∗i∗+(h′−d∗i∗))∗e =
h′ ∗ e. After renaming h′ to h, we get game GBB,2 given in
Figure 6.

Next, the proof search focuses on the product c ∗ d in the
exponent of the first group element returned by PrivKey and
applies Rnd? to replace the expression r ∗ (i − i∗) + c by r

The actual core rule application is

Rnd(pr, (2− c)/(i− i∗),2 ∗ (i− i∗) + c)

where pr is the position of the sampling of r in the oracle.
Here, sppr (GBB,2) includes the axiom i 6= i∗ which is re-
quired to prove that the second context is the inverse of the
first. After simplification, line 5.3 changes to

5.3 : return (gd∗r+h∗(r−c)/(i−i
∗), g(r−d)/(i−i

∗)).

In the next step, the proof search automatically applies
the DBDH assumption. The rule matches up the samplings
of c, d, e in the game with the samplings of a, b, c in the
DBDH assumption. The rule synthesizes the simulator given
in Figure 7 using (ξ1, ξ2, ξ3, ξ4) = (gc, gd, ge, ê(g, g)c∗d∗e) to
denote B’s input. Applying the rule results in the game
GBB,4 given in Figure 6. The game GBB,4 differs from GBB,3

in the sampling of t and the value assigned to K0.
To finish the proof, the proof search first applies IfEq to

obtain game GBB,5 given in Figure 6. Afterwards b does not
occur anywhere except in the event b = b′ and the proof
is concluded by applying the Indep rule to the randomly
sampled boolean b. The application of Indep yields the
desired probability bound 1

2
.

6. ADVANCED CORES RULES
The set of basic core rules are complemented by a set of

advanced core rules which are required for more advanced
examples. The set of advanced core rules is given in Fig-
ure 8. The set contains rules new rules for program trans-
formations, equivalence up to failure, and hybrid arguments.



Program transformation:

Assert(c)
[ G; assert(c) : ev ∧ c ]t � ε

[ G : ev ∧ c ]t � ε

Equivalence up to failure:

Upto(p, c)
[ G{guard(c)}p : ev ]t � ε1 [ G{guard(c)}p : ∃x ∈ Qo. c(x) 6= c′(x) ]succ � ε2

[ G{guard(c′)}p : ev ]t � ε1 + ε2
p first position in o

Guess
[ G; x← A() : ev ]t � ε× no

[ G : ∃x ∈ Qo. ev ]t � ε
Find(C, e)

[ G; x← A(e) : ev1 ∧ ev2 ]t � ε
[ G : (∃x ∈ Qo. ev1) ∧ ev2 ]t � ε

C efficient and
sp|G|(G) |= C{(e, x)} =E ev1

Hybrid Arguments:

Hybrid(p, ob)
[ G{ob}p : ev ]t � ε1 [ SE1 ][SE2]

� ε2
[ G{ob′}p : ev ]t � ε1 + no × ε2

p points to body of o, ev′ = splitQuants(o, ev),

SE1 = [ G{bif< : ob | bif= : ob′ | bif> : ob′}p : ev′ ], and

SE2 = [ G{bif< : ob | bif= : ob | bif> : ob′}p : ev′ ]

OSwap(p)
[ SE{}p{x←$ D}p′ ]t � ε
[ SE{x←$ D}p ]t � ε

p first position in bif= of hybrid oracle
p′ position before adversary call containing p

Figure 8: Advanced Core Rules.

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 : i∗ ← A1();

2 : h←$ Fq; let P =(ξ1, ξ2, ξ
i∗
2 ∗ gh);

3 : b←$ B; let C =(ξ3, ξ
h
3 ;

4 : let K0 = ξ4; K1 ←$ Gt;
5 : b′ ← A2(P,C, (b?K0 : K1)) with

PrivKey(i) = {
5.1 : guard(i 6= i∗);

5.2 : r ←$ Fq;
5.3 : return (ξr2 ∗ gh∗r/(i−i

∗) ∗ ξ−h/(i−i
∗)

1

, gr/(i−i
∗) ∗ ξ−1/(i−i∗)

2 )

};
6 : return b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Figure 7: Synthesized simulator for DBDH.

6.1 Program transformation
The Assert(c) rule appends the command assert(c) to

the body of the game and requires that the event already
contains the conjunct c. The assert(c) can then be moved
further up using Swap if c is well-defined at the given posi-
tion. Then the condition c can be exploited to simplify later
commands.

6.2 Equivalence up to failure
The Upto(p, c) rule replaces guard(c′) at position p in an

oracle with guard(c) and yields two proof obligations: In the
resulting game, bound the probability of the original event
and the probability that the adversary performs a query
where the results of c and c′ differ. To deal with the exis-
tential quantifiers introduced by Upto, the following rules
are used. The Guess and Find(C, e) rules get rid of an exis-
tential quantification ∃x ∈ Qo. ev in the event by introducing

an adversary that guesses or finds an e ∈ Qo for which ev
is true. The arguments e and C of the Find rule define the
argument given to A and (efficient) test executed by A to
determine if a given x ∈ Qo satisfies ev.

6.3 Hybrid arguments
To formalize hybrid arguments, we first extend the syntax

and semantics of games with hybrid oracles. A hybrid oracle
has a body of the following form:

[bif< : ob1 | bif= : ob2 | bif> : ob3]

Here, ob1, ob2, and ob3 are ordinary oracle bodies consisting
of a sequence of oracle commands and a return expression.
To execute a game containing hybrid oracles, a value io in
{0, . . . , δo − 1} is sampled initially for each hybrid oracle o.
The oracle body for a hybrid oracle o is defined as

if (co < io) then bif<

elif (co = io) then bif=

elif (co > io) then bif>.

For Hybrid oracles, the query loq Qo contains only argu-
ments for queries with co 6= io and the argument of the
io-query is stored in a global variable.

Hybrid oracles are required to express the proof obliga-
tions of the Hybrid rule. The Hybrid(p, ob) rule replaces
the oracle body ob′ with ob at position p and yields two
proof obligations: Bound the original event ev in the result-
ing game and bound the distinguishing probability for the
two hybrid games. In both hybrid games, ob is used if co < io
and ob′ is used if co > io. If co = io, the first hybrid game
uses ob′ and the second hybrid game uses ob. The modified
event ev′ accounts for the fact that the query log does not
contain the argument for the io-th query anymore. It uses
the function splitQuants to replace quantifications such as
∀x ∈ Qo. c 6= c∗ with (∀x ∈ Qo. c 6= c∗) ∧ c 6= c∗ where c
refers to the argument of the io-th query.



A related rule is the OSwap(p) rule that requires the po-
sition p to point into a hybrid oracle definition. More pre-
cisely, p must point to the first command of the body for
io = co, and this must be a sampling. OSwap exploits that
the body for io = co is executed at most once and moves this
sampling to the main body of the game immediately before
the adversary call containing the oracle definition.

7. TOOL AND CASE STUDIES
We have implemented the logic and the described algo-

rithms in the AutoG&P tool and verified its effectiveness on
the case studies presented in Table 1.1 The source code of
AutoG&P comprises about 13K lines of OCaml with about
3KLoC each for proof search and extraction to EasyCrypt.
The tool performs proof search with a bound on the size of
the proof tree to ensure termination.

7.1 Case studies
The first four entries of the table are smaller examples

that can be proven automatically except for the first one.
The first example proves the implication between two as-
sumptions and requires a creative step that the proof search
(expectedly) does not discover.

The Cramer-Shoup encryption scheme and the Kurosawa-
Desmedt encryption scheme use cyclic groups and are IND-
CCA secure. Our proofs of the two schemes closely follow
the published proofs and yield similar bounds. For Cramer-
Shoup, we provide two proofs. The first proof is manual
(25 lines) and checked in one second. The second proof is
discovered fully automatically by the proof search algorithm.
The proof is essentially identical to our manual proof and
is found in around 12 seconds. The structure-preserving
encryption scheme by Camenisch et al. uses bilinear groups
of Type I. Again, the structure of our proofs closely follows
the pen-and-paper proof. All three proofs rely on the Upto
rule for reasoning up to failure.

The proof of selective security for the Boneh-Boyen IBE
scheme is discovered automatically both for the Type I and
Type III versions of the scheme. Somewhat surprisingly, the
sequence of high-level rule applications is identical for both
settings which is promising for certified automated trans-
lation between settings. The proof of full security for the
Water dual-system IBE follows the dual-system methodol-
ogy, i.e., first the challenge cipher-text is encrypted using
the so-called semi-functional encryption algorithm, then a
hybrid argument is used to replace the key generation algo-
rithm by a semi-functional version, and finally, it is shown
that the view of the adversary is independent of the bit b.

7.2 EasyCrypt proof generation
We have implemented a proof generation mechanism that

transforms a valid derivation in our logic into a file that
can be verified independently using EasyCrypt. Generation
is done in four steps:

1. build a context that declares all size variables, opera-
tors, constants and global variables required in the different
games of the proof. This step translates the signature and
the setting into EasyCrypt;

2. build the sequence of games, including the code of the
simulators in reduction steps;

1 The AutoG&P tool and the case studies are available at
https://github.com/ZooCrypt/AutoGnP.

3. output judgments in the relational and ambient logics
of EasyCrypt to justify all steps in the derivation tree. This
step critically uses high-level proof principles formalized and
proved in EasyCrypt libraries;

4. prove the concluding claim by combining all previous
derived inequalities.

The generation algorithm involves some non-trivial“plumb-
ing” between the two systems. In the long term, we plan to
enhance automation in EasyCrypt by providing a tighter in-
tegration of AutoG&P and EasyCrypt.

8. RELATED WORK
There is an increasing number of tools for proving the se-

curity of cryptographic constructions in the computational
model. The oldest tool is CryptoVerif [13], which has been
used for protocols and a few primitives. To our best knowl-
edge, CryptoVerif achieves best automation for protocols and
has never been used to verify pairing-based constructions.
More recent tools, such as CertiCrypt [9], EasyCrypt [8], and
FCF [34] can be used to reason about protocols and primi-
tives. Indeed, CertiCrypt has been used to verify the chosen
plaintext security of Boneh and Franklin Identity Based En-
cryption in the random oracle model [10]. However, these
tools are mostly interactive and proofs are very long and
can only be built by experts. On the other hand, there ex-
ist specialized tools, such as [19], [27], [26], [33], [31] and [7],
which achieve complete automation for specialized classes of
constructions (padding-based encryption, message authen-
tication codes, modes of operation, authenticated encryp-
tion, bounded security of structure-preserving signatures in
the generic group model). Our work is closely related to
ZooCrypt [5], which relies on a powerful domain-specific logic
to reason about chosen-plaintext and chosen-ciphertext se-
curity of padding-based encryption schemes; in particular,
our work generalizes the idea of algebraic reduction from
ZooCrypt. However, our logic is applicable to a broad range
of constructions—although AutoG&P is focused on group-
based and pairing-based cryptography. Moreover, our core
logic has strong connections with Computational Indistin-
guishability Logic, or CIL [6], a general-purpose logic to
reason about security of cryptographic constructions. How-
ever, CIL does not provide a syntax for describing games
and does not offer support for automation.

9. CONCLUSION
We have introduced a formal logic that supports concise

and intuitive proofs of cryptographic constructions, and pre-
sented the AutoG&P tool, which implements the logic for the
specialized case of pairing-based cryptography. Our exper-
iments show that formal proofs of complex pairing-based
constructions are now within reach. Future work includes
extending the scope of AutoG&P to accommodate i. q-type
and interactive assumptions; ii. random oracles; iii. key ex-
change protocols; iv. other types of constructions, including
(structure preserving) signatures; v. other areas, including
lattice-based cryptography. In addition, we plan to explore
the possibility to build on top of AutoG&P automated proof
transformations from Type I to Type III settings [4, 3], or
composite-order via prime-order groups [25, 32, 30].

https://github.com/ZooCrypt/AutoGnP


Case study Proof

Reference Scheme Property LoC Time (s)

Abe et al. ’10 [1] DDH ⇒ DP assumption reduction 4 1
ElGamal ’84 [23] ElGamal encryption IND-CPA auto 1
Escala et al. ’13 [24] Matrix D-Lin Encryption IND-CPA auto 1
Escala et al. ’13 [24] Matrix S-Casc Encryption IND-CPA auto 1

Cramer and Shoup ’98 [20] Cramer-Shoup encryption IND-CCA 25/auto 1/12
Abe et al. ’05 [2] Kurosawa-Desmedt encryption IND-CCA 70 2
Camenisch et al. ’11 [16] Structure-preserving encryption IND-CCA 22 12

Boneh and Boyen ’04 [14] Boneh-Boyen IBE sID-IND-CPA auto 2
Waters ’09 [36] Waters dual-system IBE ID-IND-CPA 98 3

Table 1: Case studies
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J. Villar. An algebraic framework for Diffie-Hellman
assumptions. In R. Canetti and J. A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II,
volume 8043 of Lecture Notes in Computer Science,
pages 129–147. Springer, Aug. 2013.

[25] D. M. Freeman. Converting pairing-based
cryptosystems from composite-order groups to
prime-order groups. In H. Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 44–61.
Springer, May 2010.
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